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Abstract. Multi-agent planning in dynamic domains is a challenging
problem: the size of the configuration space increases exponentially in
the number of agents, and plans need to be re-evaluated periodically to
account for moving obstacles. However, we have two key insights that
hold in several domains: 1) conflicts between multi-agent plans often
have geometrically local resolutions within a small repair window, even if
such local resolutions are not globally optimal; and 2) the partial search
tree for such local resolutions can then be iteratively improved over suc-
cessively larger windows to eventually compute a globally optimal plan.
Building upon these two insights, we introduce 1) a high level overview
of an anytime multiagent planning framework called WAMPF, 2) a naive
implementation of WAMPF called NWA*, 3) an efficient implementation
of WAMPF called X* which saves computation by reusing prior search
information when improving a solution, and 4) Lazy Neighbor Evalua-
tion, a novel approach to managing high cardinality neighbors.

1 Introduction

Constructing collision-free paths from a start to a goal in realtime is a problem
faced by almost all robotic systems, from wheeled robots to grasping arms to
flying drones. A challenging problem itself, there has been a wide variety of work
devoted to quickly constructing such paths [10][11] and repairing them when
environments change or obstacles move [12]. However, the problem of finding
collision-free paths for multiple agents that also avoid colliding with one another,
known as the Multiagent Planning Problem (MPP), presents another layer of
difficulty. Planning jointly for all agents requires planning in a state space with
the dimensionality that is at least linear in the number of agents, meaning the
cardinality of the state space is at least exponential in the number of agents. As
a result, this problem becomes intractable even when planning for only a handful
of agents. In general, while the problem of finding a path for a single agent is NP-
hard, solving the MPP for an arbitrary number of agents is PSPACE-hard [9].

Unfortunately, in addition to being a difficult problem, the MPP is also a
pressing one; many multiagent systems, from warehouse automation systems to
RoboCup Small Size League teams, require plans for their agents that move each
agent from their current location to their desired goal, without collisions, in an
optimal or near-optimal manner.
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Fig. 1: Stages of GrowAndReplanIn. How X* reuses search information between
windows.

In this work we focus on domains with an arbitrary number of agents but with
“sparse” agent-agent interactions, where sparsity is a function of the number of
agent-agent interactions relative to the total number of agents. This sparsity
means that the number of agents in each interaction is lower than the total
number of agents, and this fact can be exploited to speed solving.

We present four contributions in this paper. First, we present a planning
framework which exploits the sparsity of these interactions in order to quickly
solve each interaction locally, allowing for fast first solution generation. Second,
we present a naive implementation of this framework. Third, we present an effi-
cient implementation of this framework that reuses information between searches
to speed successive solution generation. Fourth, we present Lazy Neighbor Ex-
pansion which reduces memory overhead and improves runtime performance
when neighbor cardinality is high. While the second, third, and fourth contribu-
tions focus on A*-like planners, the first contribution is applicable to a variety
of search techniques. With these four contributions, we demonstrate a signifi-
cant performance advantage over state-of-the-art optimal solvers for time to first
solution while still providing competitive time to optimal solution.

2 Related Work

To put our contribution in the context of the state-of-the-art, we review existing
approaches related to 1) bounded search, 2) search reuse, 3) anytime planning,
4) multiagent planning, and 5) anytime multiagent planning.
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Bounded Search is a technique where artificial limits are placed on the search
space. While bounds usually produce a suboptimal solution, they prevent plan-
ning for contingencies that are far away or unimportant, speeding solution gen-
eration. This bound can be enforced via the time domain such as with a time-
bounded lattice [13], via depth of search such as Hierarchical Cooperative A* [I§],
or via restricted cost propagation such as Truncated D* Lite [3].

Search Reuse is a technique where information from a previous search is used
to speed up the next search. One of the most famous of such algorithms, D*
Lite [12], propagates changes in the environment back up the search tree, only
modifying states g-values as needed. Other examples of algorithms that employ
reuse are from the predator-prey domain, where the predator prunes the search
tree of a prior search to make it suitable for the current search, thereby saving
the cost of re-expanding the pruned tree [19].

Anytime Planners are planners which can quickly develop a solution to the
given problem and, if given more computation time, iteratively improve the plan
quality. Anytime algorithms are desirable for many domains as they allow for
metareasoning to make online tradeoffs between solution quality and planning
time [20]. A naive way to construct an anytime planner is to run a standard
planner with parameters which trade solution optimality for a runtime improve-
ment (e.g. A* heuristic inflation), and then iteratively re-run the planner with
tighter bounds if computation time remains [23]. While this first plan generation
is often fast, successive iterations grow increasingly slow due lack of information
reuse. Anytime planners that instead reuse information from prior searches are
faster at generating successive searches [T4].

There exists other, non A*-like anytime path planners which also leverage
this concept of reuse, such as RRT* [I0], which finds a feasible solution and
then, given more time, repeatedly improves it by further sampling the space and
updating the tree with cheaper intermediate nodes when applicable, converging
to the optimal solution in the limit. Reuse and bounded search techniques can
also be combined to further speed anytime search [2I15].

Multiagent Planners are planners designed to solve the MPP. Prior work on
these planners fall into two major classes: decoupled search and global search.
Decoupled search operates by planning for each agent serially, reserving the
location and time for each step of the plan, forcing following agent plans to avoid
these reservations. This technique is common in both path planning [I8] and
planning in general [6]. Global search treats the MPP problem as a single, large
meta-agent search problem, and attempts to employ techniques that leverage
the substructure of the problem to speed the search [16/21].

M* is a state-of-the-art A*-like global solver for optimal and e-suboptimal
MPPs [21]. It operates by first finding an optimal policy in the individual con-
figuration space of each agent, and then combining these policies into a one
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dimensional search space embedded in joint configuration space. When agent-
agent collisions are detected, the search space is locally expanded in joint space
to allow for coupled planning for only the agents involved. In domains where
agent-agent collisions are sparse, the dimensionality of these projections low,
thereby allowing M* to quickly solve the MPP.

There is also work on bridging the gap between global and decoupled planning
to exploit this sparsity of interaction, such as Conflict Based Search (CBS) [17]
and its e-suboptimal counterpart [4]. CBS is a state-of-the-art non A*-like plan-
ner which builds a conflict graph, adds constraints to each agent, and replans in
each agent’s individual space, allowing for planning space to grow exponentially
in the number of conflicts rather than the number of agents.

Anytime Multiagent Path Planners combine techniques from Anytime
Planning and Multiagent Planning to iteratively build higher quality solutions
to the MPP. Very recent work by L. Cohen et. al. [5] introduced the first anytime
MPP solver, Anytime Focal Search (AFS). AFS works by maintaining a “focal”
list of states from the openlist whose f-value is at most a suboptimality factor
larger than the smallest f-value in the openlist. It uses a large suboptimality
factor to quickly find a solution, and then tightens the suboptimality bound as
time allows, reusing search efforts and generating higher quality solutions.

3 Contributions

In this work we present 1) a framework for performing anytime multiagent path
planning (WAMPF) 2) Naive Window A* (NWA*), a naive implementation of
WAMPF, 3) Expanding A* (X*), an efficient implementation of WAMPF, and
4) Lazy Neighbor Expansion, a method for speeding up A* and A*-like planners
when the cardinality of neighbors is high.

3.1 Windowed Anytime Multiagent Planner Framework

Algorithm [I| presents the general anytime sparse interaction algorithm for multi-
agent path planning called the Windowed Anytime Multiagent Planner Frame-
work (WAMPF). WAMPF first computes individual space plans for each agent.
It then invokes the recursive planner RECWAMPF. RECWAMPF operates by
growing and replanning all existing windows (Lines |§| - E[), being sure to merge
together any newly grown windows which interfere with other windows (Lines —
|§[)7 and then finding and repairing any collisions that initially existed or were
introduced by the window growth (Lines [10] - , thereby guaranteeing a colli-
sion free path at the end of every invocation. The four subroutines provided
by the implementation of every planner using the RECWAMPF framework
are 1) FIRSTCOLLISIONWINDOW, 2) GROWANDREPLANIN, 3) PLANIN, and 4)
SHOULDQUIT.

FIRSTCOLLISIONWINDOW(IT) returns a window, w, which is an artificial
constraint placed on the search space of the interacting set of agents which
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: procedure WAMPF
II + independently planned paths for all agents
W« 0
RECWAMPF
: procedure RECWAMPF
for all w € W do
w, IT + GROWANDREPLANIN(w, IT)
if 3w e W :w' Nw # 0 then
w, W, IT <~ PLANINOVERLAPWINDOWS(w, W, IT)
while FIRsSTCOLLISIONWINDOW(IT) # () do
w 4 FIRSTCOLLISIONWINDOW (1)
w, W, II < PLANINOVERLAPWINDOWS(w, W, IT)
for all w € W do
if SHouLDQUIT(w) then W + W \ {w}
if W =0 then return
RECWAMPF
: function PLANINOVERLAPWINDOWS(w, W, IT)
for allw' € W:w' Nw # 0 do
w—wUw
W« W\ {w'}
IT + PLANIN(w, IT)
W+ WU {w}
return w, W, Il
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encapsulates an agent-agent interaction in I7. This constraint allows for a focused
search to quickly find a joint path free of that interaction. In addition, for an
arbitrary window w1, it has a successor, ws, where wy C ws.

SHOULDQUIT(w) is a predicate that determines if the given window w should
no longer be grown. This can be due to time restrictions, iteration restrictions, or
other intelligent termination conditions. One such condition is when the optimal
solution is found inside w, which is achieved when w grows large enough that it
no longer restricts the search tree of interacting agents, thereby allowing for an
unimpeded search to form a valid A* search tree from the start to the goal.

PLANIN(w, IT) plans inside a given window w, replacing the section of IT
that travels through w with a path planned from scratch.

GROWANDREPLANIN(w, IT) grows and then plans inside a given window w,
updating of the section of IT that travels through w. It has the option of reusing
the information from the prior search in the smaller un-grown window during
its planning process.

3.2 Naive Window A¥*

Naive Window A* (NWA*) is a naive implementation of WAMPF. It provides
the four needed subroutines of WAMPF.

FIRSTCOLLISIONWINDOW(IT) is implemented by modeling a window as a
cube in joint space defined by an interaction center and a “radius” measured by
the L., norm from the center. It possesses a start b and goal e, each in the joint
space of interacting agents. These states sit either on a face of the window or
inside it, with the position of each individual agent defined to be that agent’s
individually defined path as it enters and exits the window in individual space,
or its individual start or goal.

SHOULDQUIT(w) is implemented by quitting if in the last iteration, the search
tree associated with w was not restricted by the window constraints.

PLANIN(w, IT) is implemented as a joint space A* search with the window
constraints.

GROWANDREPLANIN(w, IT) is implemented as a growth via an increase in
the window radius, updating of b and e, and then a joint space A* search within
the window constraints, with no efficient search reuse.

3.3 Expanding A*

Expanding A* (X*) is an efficient implementation of WAMPF. It is imple-
mented identically to NWA* but with a GROWANDREPLANIN subroutine that
leverages information reuse.

GROWANDREPLANIN(w, IT) is implemented to reuse the search information
available from the last window in the new, larger window. This reuse of part of
the search tree from the previous iteration is a key idea exploited by X*.

This subroutine operates much like standard A*; it uses an open list, O, to
hold the search frontier, and a closed list, C, to hold already expanded states,
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with states s € O expanded in the order of minimum f-value, f(s), and this min-
imum state accessed by top(O). GROWANDREPLANIN also has a state neighbor
function, N(s), which returns the set of collision-free neighbors of s. In addi-
tion, it also uses the unique concept of an “out-of-window” list, X, which stores
states removed from O and intended to be expanded, but are outside of the cur-
rent window boundary. These states are stored in X for use in the next search.
Finally, GROWANDREPLANIN reasons about the path between the successive
window starts by and by along the path, m, and accesses the cost of 7 via ||7]|.
Figure [I| shows the three stages which make up X*'s GROWANDREPLANIN
procedure. The first stage transforms a search tree from b; to e; in w; into a
search tree from by to e; in ws. The second stage transforms the search tree from
by to ey in wy into a search tree from by to ey in wso. The third stage transforms
the search tree from a from by to e in woy into a search tree from by to e in wo.

Stage 1 This stage, presented in Algorithm [2] reintroduces states from X to
O, as they would have naturally been expanded by an A* search from b; to e;
if run in ws. It then runs A* until the smallest f-value in O is greater than or
equal to the f-value of ey, f(e1). It also repairs the f-values of all the states in
the C, such that they are optimal in wq for e;.

Precondition 1 Valid A* search tree formed by O and C from by to e1 in w;.
Postcondition 1 Valid A* search tree formed by O and C from by to ey in wo.

Proof Sketch 1 We know that, from Precondition[d] all states exzpanded in the
search of w1 were expanded because their f-value is less than or equal to the f-
value of e1. Thus, if a state was prevented from being expanded by the boundary of
w1, and thus placed in X, in wo that state should be reconsidered for expansion.
Furthermore, it is possible that there are states in C which, due to the constraints
imposed by w1, have suboptimal f-values in wo. To handle this, A¥*SEARCHUNTIL
will re-expand a state already in C' if that state is removed from the top of O
with a lower f-value (Algorithm@ Postcondition Line @ Thus, after Line
we know that we have a valid A* search tree formed by O and C from by to e;
in wa, and thus Postcondition[]] is met.

Algorithm 2 Stage 1

1: procedure STAGE]

2: O+~ 0uUX

3: X<« 0

4: A*SEARCHUNTIL(O, C, X, w2, f(e1))
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Stage 2 This stage, presented in Algorithm [3] moves the start of the search
tree from by to by in ws. The optimal path from by to by, m, is known via the
individually optimal plans, and thus both its cost, |||, and the states along the
path, s € 7, are known.

The f-value of all states in O and C are increased by ||x||, (Line [2), and
states along the path m are expanded (Line [3)).

Precondition 2 Valid A* search tree formed by O and C from by to e1 in wo.
Postcondition 2 Valid A* search tree formed by O and C from by to e1 in wo.

Proof Sketch 2 We know from Precondition[d that we have a valid search tree
from by to ey ; if we connect by to by via an optimal path, we can insert the existing
tree into the new tree. We know by construction w is optimal, as the individual
plans were optimal, and collision-free, as they are not part of the initial collision.

Thus, extending the f-value of all states s € O U C by ||| serves as the
minimum cost to reach these states from by through by to s, as per the definition
of m and Precondition [4, and thus serves as an upperbound on the cost to go
from by to s. The algorithm then expands, using A*SEARCHUNTIL, all states
with an f-value lower than the extended f-value of ey, re-expanding any states
in the closed list with a lower f-value than that which was closed (Algorithm @
Postcondition Line @ Thus, a valid A* search tree formed by O and C' from
by to ey in wo, and Postcondition@ is met.

Algorithm 3 Stage 2

1: procedure STAGE2
2: for all s € O,C do f(s) < f(s)+ |||
3 for all s € 7 do
4: C+ CU{s}
5.
6

O+ OUN(s)
A*SEARCHUNTIL(O, C, X, w2, f(e1) + ||x]|)

Stage 3 This stage, presented in Algorithm [4] moves the goal of the search tree
from e; to es. This is done by recalculating the heuristics for all openlist states
and continuing the execution of A* with the existing O and C.

Precondition 3 Valid A* search tree formed by O and C from by to ey in wo.
Postcondition 3 Valid A* search tree formed by O and C from b to ey in wo.

Proof Sketch 3 We know from Precondition[3 that the search tree spans to e;.
In addition, we know that there exists a path from ey to es by construction of
these goals. Thus, by running standard A* with O and C towards es (Lines @ -
, we know from the properties of A* that the result is a valid A* search tree
formed by O and C from by to ey in wa, thus satisfying Postcondition [3
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Algorithm 4 Stage 3

1: procedure STAGE3
2: for all s € O,C do h(s) < H(s,e2)

3 while O #0 do

4 s « top(O)

5: if s = ez then return UNWINDPATH(C, e2, b2)
6: O+ O\ {s}

7 if s € C then continue

8: if s € w then

9: X + X U{s}

10: continue

11: C+ CU{s}

12: O+ OUN(s)

13: return NOPATH

A* Search Until presented in Algorithm [5] is a modified version of A* where
an inconsistent heuristic is used; it expands a state s € O if that state s € C, or
if s € C, but s was placed in C with a higher f-value than s’s current f-value.
In addition, rather than halting when the goal is found, A*SEARCHUNTIL halts
when the f-value of the state at the top of the openlist has an equal or greater
value than the given limit f,,,,. This ensures that, assuming a valid A* search
tree was given via O and C, the final search tree will have a frontier as if standard
A* was run from b inside ws.

Precondition 4

1. Vs € C : 3 a path to the start from s through the standard A* unwind.
2.VseC,¥ne N(s):(neCVneO)Ag(n)=g(s)+c(s,n).
3. fmaz = top(O)

Postcondition 4 Standard A* search tree from b to a frontier of cost greater
than or equal to faz-

Proof Sketch 4 We know from Precondition[d that all states s € C'UO have
been properly expanded, but the order of expansion may be different than that of
Standard A*. However, this algorithm allows for state re-expansion, as shown
on Line[5, to ensure that if a suboptimal g-value associated with a state s was
previously expanded and placed in C, s can be re-expanded with the optimal g-
value of s. As per Line[3, we know that the algorithm halts when all states with
an f-value less than or equal to fmae have been processed, which means these
states have had their optimal g-value, and thus optimal f-value, assigned, and
as per Precondition [3 this means that all of the states in C have been properly
ezpanded. Thus, we have formed a standard A* search tree from b to a frontier
of cost greater than or equal to fraz-
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Algorithm 5 A* Search Until

1: procedure A*SEARCHUNTIL(O, C, X, w, fmaz)
while f(top(O)) < fmaz do
s < top(O)
O+ O\ {s}
if 3 € C:s=5"A f(s) > f(s') then
continue
if s € w then
X + X U{s}
continue
C+ CU{s}
O+ OUN(s)

»

—

—

3.4 Lazy Neighbor Expansion

A* with an exact heuristic is known to perform the minimal number of state
expansions possible in order to find an optimal solution [7]; however, on graphs
with a high average degree, the runtime of real-world A* implementations is usu-
ally dominated by managing neighbors and managing the heap data structure
backing the openlist, O [22]8]. Approaches such as Partial Expansion A* [22]
and Enhanced Partial Expansion A* [8] seek to remedy this issue by only par-
tially adding neighbors to O, and performing book-keeping to add more of the
neighbors later if needed.

Our approach, show in Algorithm @ introduces a generator G : = (8, Nmin, )
which is responsible for maintaining knowledge of the neighbors of s, including
the unexpanded joint neighbor state with the lowest f-value, nyi,, as well as the
ability to generate the next of such a state if it exists, stored in the set [.

Algorithm 6 Generator Functions

1: function MAKEGENERATOR(S)
2: return (s,argminneN(G.S) : f(n),@)

3: procedure GETNEXTSTATE(G)

4 if G.nmin = argminnEN(G'ﬂ : f(n) then

5 G.l+ N(G.s)

6: G.l+ GI\{G.nmin}

7 G .Nmin < top(G.1)

8: function ISEXHAUSTED(G)

9 return G.nmin # argmin,,c yg.o) : (M) AG.L=10

A generator state expansion introduces a single generator, G, to O, ordered
using the value of f(G.nmin), which serves as a lower bound on the f-value of all
states in N(G.s). Where b is the branching factor of the joint graph and n is the
number of expanded and un-closed states, a generator expansion only requires a
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single heap percolation rather than b heap percolations, and it reduces ||O|| by a
factor of b, making the generator addition to an openlist of O(logn), rather than
O(b*logbn) for an eager neighbor expansion. The generator also avoids initially
storing the full N(s) set, saving the storage space in the common case where G.s
is expanded but none of its neighbors are expanded. G is removed from O when
G .Nmin has been expanded and ISEXHAUSTED(G) is true.

Furthermore, Algorithm [4] Line [2] requires a full reordering of O’s heap. The
generator model allows for the reordering of each generator (an O(b) operation)
to be deferred until use, and drops the cost of an O reordering from O(bn) for
eager to O(n) for lazy, thereby saving the reorder cost for generators that are
not queried after the reorder.

We compare Lazy X* to Eager X* to demonstrate the performance improve-
ment of the Lazy Neighbor Expansion optimizations for a single interaction. In
order demonstrate this performance, we run X* on the scenario Circular Swap:

Circular Swap (CS) Agents are placed on the edge of a circle and each agent
attempts to swap places with the agent diametrically across from it. This scenario
represents the worst case for all multiagent planning algorithms, as it requires a
high degree of interaction for all agents.

Lazy X* First Search
|1 — Lazy X* Full Search
N Eager X* First Search
10 E Eager X* Full Search
=
g
o 10?2 3
E| ]
|
=]
~
10" 3
10°

Agent Count

Fig. 2: Runtimes of Eager X* and Lazy X* on CS; 95% confidence intervals over
100 trials.

Figure [2| shows X* run on CS with a starting window radius of 2 and a
heuristic inflation of 1.0. The results show Lazy X* produces somewhere between
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a 2x and 8x performance improvement over Eager X*. Due to the significant
performance improvement provided by Lazy Neighbor Expansion, all further
experimentation is performed with Lazy Neighbor Expansion.

4 Experimental Results

We evaluate X* in 3 ways: 1) we explore the behavior of X* across its configura-
tion settings; 2) we compare how X* scales with the number of agents involved
in a single interaction versus several baseline and state-of-the-art algorithms; 3)
we present the performance of X* vs several state-of-the-art optimal planners
for several realistic scenarios.

4.1 Characterizing X*

Selecting Parameters

Heuristic Inflation In this work, X* assumes that the given heuristic is admissi-
ble and consistent, as these are required for X* to find optimal paths. However,
a standard technique to speed up A* is to trade speed for optimality by inflating
the search heuristic by an € > 1, which causes A* to produce a path with a
cost that is within € of the optimal path cost. X* also supports this technique
to allow for bounded sub-optimal planning.

700 —— X* First Solution
X* Full Solution

600

= (Sl
(== (=
(=] (=]

1 1

State Expansions
w
o
o
1

200

100 A

0 T T T T T T T T T T T

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
Heuristic Inflation

Fig. 3: X* state expansions vs heuristic inflation
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Figure [3[ shows X* run on CS with a starting window radius of 2 with 4
agents. This curve shows that the best solution quality vs plan time tradeoff is
when inflation is approximately 1.1.

Initial Window Sizing Initial window selection determines how much of the joint
space X* will search on its first run. Selecting too large of a window requires X*
to search farther than necessary to generate a valid first solution, while selecting
too small of a window requires X* to find a path in an unnecessarily or impossibly
constrained environment.

1000

800

600

State Expansions

400

200

—— X* First Solution
X* Opt. Solution

0 T T T T T T T 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11
Radius Values

Fig. 4: X* state expansions vs initial radius

Figure [4 presents X* run on CS with 4 agents and a heuristic inflation of 1.0.
This figure shows that finding a very small window that still encapsulates the
collision will significantly decrease both the first search and full search overhead.
Another interesting aspect of this result is that the peak in X* Full Solution
expansions at radius of 4 represents a lack of preference towards two optimal
solution homotopic classes, whereas the radius of 3 and 5 represent a preference
induced by Algorithm [5] Line

Minimizing Planning Dimensionality X* works by exploiting the sparse
nature of multiagent interactions, so it is important that X* maintains low joint
plan dimensionality when possible. To demonstrate this, we run X* on the sce-
nario Non-interacting Groups:
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Non-interacting Groups (NG) Agents are placed into groups of two, 10 grid
steps from each other, and attempt to swap places. Multiple of these groups
are geometrically separated from each other so that they do not interact. This
scenario represents a case where the dimensionality of the interactions can be
kept significantly below the dimensionality of full planning problem.

We ran X* on NG with 6 agents, an initial window radius of 2, and a heuristic
inflation of 1.0. X* was successfully able to keep the dimensionality of these
interactions in the space down to the two agents in each interaction. For the
first solution in each interaction, X* required 5 expansions, and for the full
solution in each interaction, X* required 25 total expansions

Quality and Computation Time vs Iteration Tradeoff As X* is an any-
time algorithm, characterizing the quality vs iteration and quality vs time trade-
off is important to employing metareasoning [20]. To characterize this, we run X*
on the scenario CS with 5 agents, an initial window radius of 2, and a heuristic
inflation of 1.0. X* was able to successfully find an optimal solution in the first
iteration, at a cost of 3 steps more than the individually optimal solution, and
was able to prove it found an optimal solution in 5 iterations. Figure |5 presents
the percentage of computation time each iteration consumes, averaged over 20
trials. This figure demonstrates that for a single interaction, X* is able to a first
solution very quickly (in approximately 1% of the total computation time) and
successive solutions come in at approximately consistent time intervals.

100%

80% -

60% -

40% -

20%

Percentage of Total Computation Time

0% T T

1 2 3 4 5
Tteration Count

Fig. 5: Percentage of total computation time vs X* iteration
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4.2 X* Scalability and Comparison Showcase

To demonstrate how well X* scales relative to baseline algorithms such as NWA*
and full joint planning A*, we measured the number of state expansions as we
scaled the number of agents while running the CS scenario.
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Fig. 6: Expansion comparison between X* and baseline algorithms

Figure [6] presents X*, NWA*, and A* run on CS with a heuristic inflation of
1.0 and a starting window radius of 2. As shown, NWA* and X* are consistently
able to generate a first solution in approximately an order of magnitude fewer
state expansions than A*. While NWA* ends up performing approximately half
an order of magnitude more state expansions than A* to get an optimal solution,
X* is able to perform roughly the same or fewer state expansions compared to
A* to get an optimal solution. X* is able to outperform A* due to favorable
expansion ordering as a result of Algorithm [5| Line

Figure [7| presents a comparison between X*, M*, and CBS run on CS with a
heuristic inflation of 1.0 and a starting window radius of 2. Due to the varying
dimensionality of M*’s state expansions and the individual space planning of
CBS, there is no meaningful comparison between expansion counts for these
algorithms and that of X*. Instead, we use a “Normalized Runtime”, presented
as a 95% confidence interval over 100 instances of the wall clock runtime of each
algorithm implementation divided by the wall clock runtime of an A* search
for each agent in individual space in each implementation. This metric is more
meaningful than raw wall clock time because it factors out different levels of
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Fig. 7: Normalized runtime of X* and state-of-the-art with number of agents in
a single interaction; 95% confidence intervals over 100 trials.

implementation optimization as well as different expenses of common operations,
such as the cost of doing a single individual space occupancy check. To mitigate
language differences such as garbage collection, all implementations used were
written in C++, where the implementation of X* was produced by the authors of
this paper, the implementation of M* was provided by the algorithm’s authorsﬂ
and the implementation of CBS was provided by a third party open source
projectﬂ All runtimes were measured on a dedicated computer with an i7 CPU,
Turbo Boost disabled, and 32GB of RAM.

4.3 Realistic Scenarios

We compare X* against Operator Decomposition (OD) M* and CBS for two
realistic randomized scenarios where optimal solutions are desirable, but anytime
properties are a boon.

Multiple Robots Around Building (BUILD) Multiple agents are placed in random
configurations in the hallways of the synthetic floor plan shown in Figure
with random unique start and goal locations. The same set of random scenario
configurations were used for each planner to ensure fair comparisons. This is
intended to be representative of a real-world configuration of delivery robots

1 M* Source Code URL: https://github.com/gswagner/mstar_public
2 CBS Source Code URL: https://github.com/whoenig/libMultiRobotPlanning
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moving about the building while constantly having to replan due to the dynamic
environment.

Fig.8: RRSO and BUILD scenarios with example solutions. All red items are
treated as static obstacles.
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Fig.9: Normalized runtime of X* and state-of-the-art in BUILD scenario; 95%
confidence intervals over 100 trials.

Figure[9 presents BUILD run with an initial window radius of 2 and a heuris-
tic inflation of 1.0. This figure shows that X* is consistently able to generate fast
first solutions for 5 or fewer agents. While the confidence intervals of X*’s first
solution and CBS overlap for 6+ agents, X*’s first solution mean is still below
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the bottom of CBS’s interval. In addition, CBS has a high upper bound on its
solution generation runtime while X*’s first solution interval is very tight, mean-
ing CBS is less reliably able to quickly generate a solution than X*. In addition,
this graph shows that while there is a very high upper bound in the speed of X*’s
optimal plan generation, it has the lowest mean runtime of any of the optimal
plans. Overall, this experiment demonstrates X*’s ability to quickly generate a
first solution in very small amounts of time, faster than or more reliably than
the state-of-the-art for multiagent planners, and it demonstrates X*’s ability
to generate a full optimal solution in an amount of time competitive with the
existing state-of-the-art.

Random Robot Soccer With Obstacles (RRSO) Agents are placed in random con-
figurations in a 5000mm x 4000mm section of the RoboCup Small Size League
field with random unique start and goal locations and a static opposing team,
an example of which is shown in Figure[§] The same set of random scenario con-
figurations were used for each planner to ensure fair comparisons. This scenario
is intended to be representative of a real-world configuration of a RoboCup SSL
field during a game, such as shortly after an indirect free kick.
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Fig. 10: Normalized runtime of X* and state-of-the-art in RRSO scenario; 95%
confidence intervals over 100 trials.

Figure[I0] presents RRSO run with an initial window radius of 2 and a heuris-
tic inflation of 1.0. This figure shows that X* is consistently able to generate fast
first solutions for 7 or fewer agents. While the confidence intervals of X*’s first
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solution and CBS overlap for 8 agents, X*’s first solution mean is still below the
bottom of CBS’s interval. Once again, CBS has a high upper bound on its solu-
tion generation runtime while X*’s first solution interval is very tight, meaning
CBS is less reliably able to quickly generate a solution than X*. In addition,
this graph shows that once again while there is a very high upper bound in the
speed of X*’s optimal plan generation, it has the lowest mean runtime of any
of the optimal plans, and even sits below the lower bound of CBS. Overall, this
experiment demonstrates X*’s ability to quickly generate a first solution in very
small amounts of time, faster than or more reliably than the state-of-the-art for
multiagent planners, and it demonstrates X*’s ability to generate a full optimal
solution in a competitive amount of time with the existing state-of-the-art.

In addition, the BUILD and RRSO scenarios demonstrate that a major short-
coming of M* is its inability to quickly generate solutions in domains with low
dimension interactions. As stated in Section [2 this is due to the fact that M*’s
runtime in these domains is dominated by the individual agent plan generation,
and thus M* spends most of its computation time calculating the individually
optimal policies of all agents, an expensive computation, whereas X* runs simple
A* for all agents, a less expensive computation.

5 Conclusion and Future Work

In this work we present a technique to perform anytime multiagent planning by
iteratively repairing individual paths projected into joint space. Specifically, we
present the concept of geometric search space bounding, a novel transformation
to allow for the grafting of these trees in larger search spaces, and a novel neigh-
bor representation to allow for lower memory usage and lazy heap updates to
speed these transformations.

At its core, X* uses A* to perform window searches; with the exception of
Lazy Neighbor Expansion, the A* implementation has no advanced features.
Despite this, X* is still able to achieve better performance than the state-of-the-
art for first plan generation and competitive performance for full plan generation.
Due to the fact that the features of WAMPF and the specific techniques of
X* are mostly orthogonal to other MPP solving techniques, we believe that
using more advanced A*-like planners and potentially non A*-like planners to
perform the window search while still allowing for window reuse will produce a
new generation of anytime multiagent planners that combine the strengths of
X* and the advanced planner.

Furthermore, we believe that the techniques we present are not limited simply
to path planning; we believe that if we can define a window in the search space
for an arbitrary graph planning problem and the problem has a mutex relation
for two or more sub-searches, our window concept plus tree search preservation
technique applied to existing solutions would produce a fast anytime planner.
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